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Abs t rac t :  F l a s h  v a c u u m  pyrolysis of 2 - subs t i tu ted  benzo[c ]phenan th rene  ha s  
been  exploited as a pivotal  s tep in a new, s imple synthes i s  of the  'bowl-shaped'  
hydrocarbon  corannu lene  1. © 1997 Elsevier Science Ltd. 

The 'bowl-shaped' C20H10-hydrocarbon, corannulene 1, is a fascinating molecular entity whose 

synthesis was first accomplished over a quarter of a century ago in what was a pioneering effort at 

that time.1 However, the advent of the fullerene era has rekindled world-wide interest in 1, as it 

constitutes a dominant, readily recognizable motif on the curved surface of buckminsterfullerene 

(C60). During the past five years, several syntheses of I have appeared, Scheme 1, 2 most of which 
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(A-F-~I) are tactical variations of the Scott strategy (A-~I) 2a involving the flash vacuum pyrolysis 

(FVP) of 7,10-disubstituted fluoranthene derivatives. Zimmermann et aL, 2d on the other hand, have 

employed FVP on a bis-trimethylsilyl derivative of cyclopenta[dei]phenanthrene system ( G ~ I )  to 

access 1. In these syntheses of corannulene, Scheme 1, the central five-membered ring is pre-formed 

and two six-membered aromatic rings are added during the key FVP process to complete the 'rim' of 

the curved surface of 1. Herein, we outline a new approach to 1 employing bench-top starting 

materials and text-book reactions, and generating a five- and a six-membered ring during a pivotal 

FVP step on the precursor 2-substituted benzo[c]phenanthrene derivatives 2a-d.3, 4 
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Reagents and yield: a, K2CO3, THF, 18- crown- 6, 65%; b, hv (450w Hg lamp), C6H6, 
12, propylene oxide, 2h, 35%; c, NBS,CCI4, AIBN,75%; d, (Bu4N)2Cr207 ' CHCI 3, 60% 

Scheme2 

The requisite benzo[c]phenanthrenes 2a-d were assembled as shown in Scheme 2. Wittig 

reaction between the ylide 3 (derived from 2-bromomethyl-naphthalene) and p-tolualdehyde 4 

furnished 5 as an E:Z mixture. Irradiation of 5 in the presence of iodine led to the desired 

photocyclization and isolation of 2-methylbenzo[c]phenanthrene 6 as the major product. 5-7 The methyl 

group in 6 was oxidized to the formyl derivative 87c via the 2-bromomethyl intermediate 77b, Scheme 

2. The formyl derivative 8 was elaborated to 2a-d, the precursors identified for FVP studies, through 

functional group transformations summarized in Scheme 3. 

When 2a-d were subjected to FVP in a quartz tube (30 cm x 1 cm) at 1200"(2 (0.5 torr, N2 flow), 

corannulene 1 could be isolated, in each case, through column chromatography on silica gel (hexane 

eluent) and was readily identified through its characteristic 1H NMR (5 7.82, s) and 13C NMR (8 

135.84, 130.89, 127.04) spectral data. 2a While 2b and 2c furnished 1 in 8% isolated yield (based on 

several runs) in the FVP reaction, 2a and 2d were less efficient (2-4%). The yields in the FVP step 

leading to I are generally low (being 10% for A-~I in the first report by Scott 2a and 8% for F-~I in the 
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most recent publication by Rabideau, 2e Scheme 1) although somewhat better yields have been realized 

in some other cases. 2 
CH 
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f 
Reagents and yield: o, CICH2PPh3+CI ", t-BuO" K +, 2h, 60%; f, CICH2PPh3+CI ", 
t-BuO" K +, 0.5h, 70%; g, (i) CH3Mgl, THF, 0.5h, 80%; (ii) PCC, DCM, 2h, 60%; 
h, PCIs, C6H6, 40%; i,LDA,THF,TMSCI, 60%; j, FVP,~1200°C, 0.5 torr, N2 flow. 

Scheme3 

Formation of 1 from 2a-d,  with the concurrent formation of a five- and six-membered ring 

during FVP reaction, was an encouraging outcome of preparative value, as the hexacyclic hydrocarbon 

corannulene can now be accessed readi ly from cheap s ta r t ing  mater ia l s  through a simple, 

straightforward sequence. 
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